RMvuexterf

INSIG MATTER

INTERNATIONAL MAGAZINE ON THE BIOECONOMY AND THE CIRCULAR ECONOMY

Supplement issue 45
Septemper 2023 RM Editori

Aluminium

- The global context
- The Italian supply chain
- Aluminium for green and circular transition
- Decarbonizing production
- Urban aluminium mines in Italy
- Separate collection and recycling: methods and technologies

RENEWABLE
 MATTER

Partners

CiAl [AV/47A e.on

Acque Bresciane
habitech
TRENTINOSVILUPPO

Networking Partners

Institut national de l'économie
circulaire
(DUSEE-IT

[
NNOVATEC
ReteAmbiente

DBWT

SPRING
Sostanobile Processes and Resources

economía

circular
Water
Grabbing
Observatory(C) oracur conowr

MATERIALLY

european oplostics

GreenBiz

Technical Partners

Printed by Geca Industrie Grafiche using mineral oil free vegetable-based inks. Geca production system does not produce exhaust and all waste of our manufacture is introduced into a process of collection and recycling. www.gecaonline.it

Contents

Emanuele Bompan

Emanuele Bompan

Emanuele Bompan
curated by Duccio Bianchi

This magazine is printed on forest-friendly FSC® paper. The FSC® logo identifies products containing paper sourced from forests that are managed in accordance with social standards set by the Forest Stewardship

CIAL report

13 Aluminium. An ecological transition material not to be wasted

15 The global context

25 The Italian supply chain

Aluminium for green and circular transition

44
Decarbonizing production

49
Urban aluminium mines in Italy

Separate collection and recycling: methods and technologies

Valuable renewable matter

Interview with Giuseppina Carnimeo

9 The circular challenge of aluminium refineries Interview with Roberta Niboli

INSIGHT
RENEWABLE MATTER

INTERNATIONAL MAGAZINE ON THE BIOECONOMY AND THE CIRCULAR ECONOMY

Supplement issue 45
September 2023
RM Editori

Aluminium

www.renewablematter.eu
ISSN 2385-2240
Reg. Tribunale di Milano n. 351 del 31/10/2014

Editor-in-chief

Emanuele Bompan

Deputy editor

Marco Moro

Managing editor

Giorgia Marino

Aluminium Research

written by Duccio Bianchi

Editing

Jacopo Bertucci

Supervision

Stefano Stellini, Gennaro Galdo

External and

Istitutional Relations
Anna Re
Art Direction \& Layout
Margherita Gallon

Infographics

Angela Testa
Translations
Gaia Marino

Contacts

redazione@materiarinnovabile.it
t. +390245487277

The magazine is made
in Dejavu Pro by Ko Sliggers

Published and printed in Italy
at GECA Srl,
San Giuliano Milanese (Mi)
Copyright
©RM Editori Srl - Società benefit 2023
All rights reserved

A project by RM Editori

Cover
Photo by Alberto Bernasconi
Where not specified, images
are by Alberto Bernasconi

Editorial
 Valuable renewable matter

company) the material became part of the mass economy. Packaging, construction, aircraft, bicycles-a planetary success. So much so that in 1954 aluminium became the leading non-ferrous metal by production volume, surpassing, with almost 3 million tons made in one year, copper. Not much even compared to the 100 million of aluminium produced in 2019.
The second life of aluminium came in the late 1960s with the industrialization of recycling by remelting the metal, a much less expensive and energy-intensive process than creating new aluminium. Immediately the process is noted for its environmental and economic pluses. The creation of second raw material requires only 5 percent of the energy used to produce new aluminium from raw ore, and today it is seeing increasing shares of the materia's use hall transportaion

In this Renewable Matter Insight issue we put this very recovery process under the magnifyin glass, with research by Duccio Bianchi and
the work of CIAL, the National Consortium for Aluminium Packaging, trying to analyze the recycled aluminium market, collection and recycling data, industrial processes, innovations and future goals. In the complex arena of ideas and projects about the future of packaging, the lightweight and recyclable aluminic monomaterial pack ad æternum becomes a cornerstone of the cirular transtion, supported by increasingly efficient virgin aluminium production and higher volumes of recovered material quantitatively and qualitatively globally, as well as by design and process modernization (well recounted in the interview with Assiral). Today because of its inherent characteristics (moisture retention, temperature, light shielding) it poses a direct challenge to recycled plastic packaging and even paper. Its light weight has an impact on ton as is no in various areas in various areas.
magical material as the Chinese of the Song Dynasty thought, but is surely capable of surprising us again and again.

Numbers that speak for themselves

Interview with Giuseppina Carnimeo

by Emanuele Bompan

Data does not lie. In line with the principles of Data does not lie. In line with the principles of the new Action Plan for the Circular Economy
of the European Green Deal, the Italian model of the European Green Deal, the Italian
of managing packaging and waste from of managing packaging and waste from
aluminium packaging represents excellence on the European scene. An achievement of which Giuseppina Carnimeo, general manager of CIAL - Consorzio Nazionale Imballaggi Alluminio (National Consortium for aluminium Packaging) is particularly proud: in fact, in 2022 the Consortium sent to recycling 73.6 per cent of aluminium packaging placed on the market (or 60,200 tons), a percentage that, including energy recovery, approaches 78 per cent. Important numbers that have avoided greenhouse gas emissions of 423,000 tons of CO_{2} and energy savings of more than 185,000 tons of oil equivalent.
Important achievements that position CIAL among the best second raw material supply chains.
Recycling is strategically important for the entire industry because of the enormous savings in raw materials and energy it provides. Suffice it to say that more than 75 per cent of the aluy min been produced, over the last hundred years, is still in circulation. It should also be noted that in Italy 100 per cent of aluminium production is based on recycling, and in terms of quantity, our country is among the first in the world. These

CIAL- Consorzio Nazionale Imballaggi https://www.cial.iten/
results are possible because of the exceptional characteristics and performance of the material, which can be recycled easily, completely and for infinite cycles, providing a durable, permanent material, always ready and available for new and different uses.

What are the reasons for the strength

 of this packaging supply chain?The choice of management criteria for the aluminium packaging supply chain guarantees a cost-effectiveness among the most efficient in Europe, realizing an excellent model of social, economic and environmental sustainability alongside an extremely constructive relationship with the territory, thanks to the combined action of institutions, companies, operators, citizens and municipalities.
The Italian system is characterized by a strong industrial symbiosis supported by a great technological evolution of the national plant network. We have state-of-the-art and extremely efficient plants that enable aluminium recovery maximize recovery and minimize the waste that is necessarily created during waste treatment. Various plants throughout Italy are equipping themselves with additional technologies to go into the so-called sub-sieve, that is, the smalle fractions of the material sorting stage that are
often lost. Only through this model can we contain as much as possible the environmental contribution paid by companies, which - it should be remembered - today is the lowest in Europe.

At the national level, collection and recycling figures are already above EU targets: you are at 73.6 per cent while EU recycling targets to 2025 are 50 per cent and 2030 targets are 60 per cent. So what are the next challenges for CIAL?
The new challenge today is qualitative rather than quantitative and concerns the need to have a new and innovative attitude and approach, also from a cultural point of view, to facilitate the transition from linear to circular economy. Focusing further on supporting separate collection and the development of new and integrative ways of recovery for constant and continuous growth in recycling is the main objective of the strategies and initiatives that the Consortium is planning for the next three years. In particular, we will work in those areas of the country that are still lagging process is new irroversibe and that, abeit prochs, the main resions of southern alt interesting and growing performance capable reducing the gap with the most advanced areas in a relatively short time. a relatively short time.

The circular challenge of aluminium refineries

Interview with Roberta Niboli

now included personalized support, throughout the country. This support is not limited to the simple disbursement of economic considerations against the material collected and conferred but, rather, to ensure the identification of the best possible options for maximizing the recovery of aluminium in the different territorial contexts. Through continuous analysis and monitoring, we also evaluate possible rewarding and incentivising forms according to increasing levels of quantity and quality collected per capita; we offer support in the adoption of new technologies an integrative solutions of the separate collection itself to ensure the capture of material fractions mistakenly conferred in the undifferentiated waste; we strengthen the recovery of the aluminium fraction from the sub-sorting plants of waste from separate collection to minimize waste disposal and thus maximize the recovery of this component, not forgetting the recovery of aluminium from the treatment of post-combustion slag after the waste-to-energy process.
The circular strategies of the European Green Deal require not only that all packaging be recyclable by 2030, but also that it be designed for this purpose, seeking to prevent waste formation.
I would phasize how aluminium is the ideal material for the production of packaging trays, thin foil in rolls and for wraps, caps, closures and coffee capsules) because it is closures and coffee capsules) impact and corrosion resistant, and provides a barrier effect that protects against
light, air, moisture and bacteria. In line, therefore, with the very high standards required in the food and beverage sectors for long and safe indispensable contribution to the prevention of organic waste formation and the reduction of food waste and scraps.

How is aluminium packaging design changing

 Lightening is a key strategy for reducing material consumption. Thanks to research and technological development, the weight of a 33 cl beverage can has decreased over the past 20 years from 14 grams to the current 12.2 grams, a drop of 12 per cent, that of cans has been reduced by 13.2 per cent, while the average thickness of thin aluminium foil has been reduced by 27.5 per cent and that of trays by 15 per cent. For environmental protection, these are "heavyweight" grams that, when multiplied by the billions of pieces made each year, translate into tons saved in production. If we add up the results obtained for the different types of aluminium packaging, we arrive at a total saving of about 107,000 tons, with 5350 tons saved on average each year. Of course, all of this affects not only the supply of aluminium, whether from raw material or scrap, but, cascading into so many production costs and energy savings. Tukinium savings had over the avast 20 years is equivalent to over 51,000 car bodies, while the total savings of 107,000 tons of aluminium translates into lost greenhouse emissions of 936,000 tons of CO_{2} equivalent. -
by Emanuele Bompan

For an energy-consuming material like aluminium, circularity is an economic as well as an environmental opportunity. From this point of view, aluminium refineries do a very important job by recovering waste materials derived from industrial processing. There are many issues affecting aluminium: from energy efficiency to electric cars to the effects of the Carbon Border Adjustment Mechanism on European refineries. To frame the sector's present and future challenges, we met Roberta Niboli, president of Assiral, the Italian Association of aluminium Refiners.

How far has the evolution of aluminium refining evolved from a circular perspective? On so many issues such as environment, safety and production efficiency we are seeing continuous improvement due to the evolution of available technologies. What has increased most of all has been the efficiency, which consequently has reduced energy consumption and environmental impact in the production phase. Also thanks to the European Green Deal, another growing trend is to maximize the recycling make. There has been a lot of investment in the refining sector so that all types of scrap can be recovered, even those with a higher percentage organic material. This makes it possible to go and optimize processes from a circular perspective.

What technological innovations and strategies have been brought to the ground to cope with the expensive energy that has hit the most energy-consuming sectors like yours?
We have done a lot of work on reducing consumption: from increased insulation of furnaces to efficient combustion processes that limit heat loss. New energy carriers such as hydrogen, which are much talked about but not yet used industrially, are also being studied. Let's say that from an energy point of view, a ready-made solution is to take advantage of photovoltaic panels to generate clean energy directly.

If we are to look at performance instead what are the types of products that can be achieved?
Maximizing circularity is now a requirement. In the past two years, even companies that were not using scrap as a secondary raw material
are trying to focus on recycling. This trend to maximize the recycling component in all types materials will grow, partly due to the push of European legislation.
In addition to energy efficiency, the main innovations will be related to the major transformation of the automotive sector. With the shift from the endothermic engine to the electric motor, the key will be to be able to make products with a low carbon footprint, a high recycling rate, and the use of green energy.

When it comes to digitization, what roles

 can these technologies play in production processes?Undoubtedly, digitization will involve all processes in companies: from production and t a dynamic market it is essential to invest in digitization, the evolution of which is very rapid Especially in automotive, a sector undergoing Especially in automotive, a sector undergoing a

CBAM-European Commission https:|/shorturl.at/fhov8

What kind of scenario is in store for the

transition to electric?

It is difficult to get an accurate picture at the moment. Growth volumes were expected in 2018 but these were still modest shares. The updated estimates show that in many countries, especially those in the North, the growth rate will be very high. We will have to figure out what new types of aluminium components will be present, what types of alloys will be used to produce them, and then, upstream, how to meet these needs through the recycling process.
Among the carbon-intensive products included in the Carbon Border Adjustment Mechanism (CBAM) is aluminium. Will it serve to prevent emissions leakage (carbon

out of Europe?

It will now simply be a study and data collection phase. However, if the purpose of the CBAM mechanism is to protect the European industry, there is a risk that Europe, having still a high
dependence for primary aluminium on nonEuropean countries, will find itself paying additional costs on importing material that we need anyway. It will be important both to increase the recycling rate, but also to have availability of primary aluminium in Europe.

Are there other critical issues that Assiral is fighting for?
Every year Europe exports millions of tons of scrap, which essentially translates into electricity exports. Because when we export scrap, we lose a raw material that can be recovered and reused with 95 percent less energy than producing aluminium from ore. The percentage of aluminium in electric cars will increase in various sure that the available aluminium is used for European production. If it is exported, however, there is a need to make sure that those who recover it have enviro mental standards similar to those in Europe. -

CIAL report

Aluminium

An ecological transition material not to be wasted

curatęd by Duccio Bianchi

1100\% and potentially infinitely recyclable, aluminium is one of the most outstanding circular materials. Its strength and high rate of circularity will play an increasingly important role in the ecological

The global context

The global flows of aluminium
luminium is one of the most "circular" materials, with almost complete and infinite recyclability, and a long stay in the system: 75 per cent of nd a long stay in the system: 75 per cent of is still in use, either as an original or recycled is still in use, either as an original or recycle is 1098 million tons.

In 2019, world aluminium production was just under 100 million tons, from which about 81 million tons of finished products were obtained About 40 per cent of these were replacement products, and 60 per cent (48 Mt) were additional products to the stock in use.
End-of-life products totalled about 27.2 million tons (Mt), of which 20 Mt were recycled in the same production process.

Primary e Secondary Aluminium World Production (millions t / y)

— Primary — Secondary

Global aluminium production comes from both primary (66 per cent in 2019) and secondary (34 per cent) processes, i.e., recycling.
Primary processes are based on the extraction of alumina from bauxite and subsequent electrolysis to obtain metallic aluminium. To produce 63.7 Mt of primary aluminium, more than 70 Mt of bauxit was extracted in 2019.
On a global scale, secondary processes, from which 32.7 Mt of aluminium is derived, were fed by 34.4 Mt of process waste and pre- and postconsumer scrap (42 per cent and 58 per cent of the scrap used, respectively, but in Italy, the breakdown is different). About 73 per cent of post-consumer aluminium waste is directly recycled.
Primary aluminium production, based on the electrolytic process, has nearly tripled in the past twenty years, primary production. Over the past Europe and North America (from a cumulative 10.7 Mt in 2000 to 76 Mt in 2019) while it has grown tremendously in China (from 28 Mt to 36 Mt between 2000 and 2019), where 56 per cent of morld production is now concentrated world production is now concentrated. domestic and pre-consumer scrap and from pos consumer scrap) was about 33 Mt in 2019 (34 pe cent of total production) and has tripled over the past two decades, although the ratio of primary to secondary has remained essentially stable. In Europe and North America (as well as Japan),

Data, here and below unless otherwise specified, is derived
from the public datab from the public database in https:|//alucycle. org/ Data has been made available since 1962 and is separated by variou world regions (e.g., etc.).
secondary production has become predominant over primary production: it was 37 per cent in 2000 became 58 per cent in 2019. China accounts for 35 per cent of the world's secondary aluminium production.
Recycled post-consumer comes mainly from demolition of motor vehicles and transport equipment, construction, and packaging collection.

Final uses of aluminium

Aluminium finds use in a plurality of applications. On a global scale, the predominant uses are in the production of transportation equipment (mainly motor venicles and trains) and in construction accoung for 0 per cent and 24 per cent, mobility sector are predo (42 per of the total).

Other imp

the employment include (mainly cables), packaging production, mechanical production, and the production of consumer durables (from cookware to furniture products).
All employment sectors have experienced strong quantitative growth, albeit with regional differences. In China, construction and machinery jobs grew considerably, while in Europe, jobs in the transportation secto grew a lot.

Global Production and End Use of Aluminium Goods (millions t / y)

Cumulative Production of Primary Aluminium and Aluminium in use (millions t / y)

- In use

Mt = million tons

The permanence of aluminium

Aluminium is a "permanent" materia, meaning that once produced and placed on the market it remains there for a very long time, both because of the long service life of the main products and because of the high recycling rate and minimal losses it is subject to during recycling. Of the total primary aluminium historically produced - an estimated $1,471,000$ tons, more than half of which was released in is palll in use, either - about 75 per cent is as a product resulting from recycling (elaboration on IAI - Alucycle data) The original aluminium products still
in use correspond to about 65 percent of the aluminium historically placed on the market.
The average lifespan of aluminium products is very high, exceeding 25 years. In the construction sector, the average lifetime is about 50 years, and in the mobility sector it ranges from about $15-20$ years for cars to more than
40 in aeronautics or trains. In consumer durables, the average life span is also durables, the average life span is also which obviously has an annual lifespan, weighs in at only 11 per cent of products placed on a global scale.

Despite aluminium's high value and recyclability a significant portion of it is still being disposed of On a global scale, IAI estimates that unrecovered post-consumer aluminium waste is worth cumulatively (from 1950 to the present) about 46 per cent of the total waste generated. On postconsumer waste generated today, however, the recycling rate is much higher, about 70 per cent on a global scale and 79 per cent in Europe. The product types for which a lower recycling rate is estimated (70 per cent to 33 per cent) are machinery components, consumer durables electrical uses and foil packaging.
In Europe, the recycling rate (or rather, domestic collection, since Europe is an exporter of aluminium scrap) has significantly increased in recent years, from 65 per cent in 2005 to 79 per for recycling from 206 to 413 million tons. fighounts of scrap are also ger industrial processes of aluminium production and semifinished products. This pre-consumer scrap, at present has almost total recovery primarily in at present press. remelting processes
generated in productio within the same uction processes and recycled with the same processes does not statistically emerge because it is recycled within the plant or within the property itself.

Recycled and Non-Recycled Scrap in Europe

The development prospects for production and consumption

Strong growth in demand for aluminium is expected in the coming years and decades. CRU International's study for the International Aluminium Institute, Opportunities For Aluminium An A Post-Covid Economy (2022), details demand forecasts in key industrial sectors and regions n post-Covid economy. Transportation, contion, packaging, and the electrical sector are the four key sectors that will drive demand, accounting for 75 per cent of the total metal demand.
Overall, global demand for aluminium is expected to increase by nearly 40 per cent by 2030 , and the aluminium sector will need to produce an additional 33.3 Mt to meet demand growth in all industries, rising from 86.2 Mt in 2020 to 119.5 Mt in 2030
Nearly two-thirds of this growth will come from China and the rest of Asia $(20.9 \mathrm{Mt})$, while Europe's increased demand will be in the range of 4.8 Mt .

In almost all aluminium end-use sectors, the demand driver is related to environmental
sustainability and in particular to reducing energy consumption and climate-changing emissions. The greatest growth in absolute demand will ome from the Transportation sector, which, driven by electrification, will grow from a consumption of 19.9 Mt of aluminium in 2020 to 31.7 Mt in 2030. Most of this growth will come from China (33 per cent), North America (22 per cent), and Europe (19 per cent)
In the electricity sector, the transition to green energy sources will strengthen demand for aluminium, which will reach 15.6 Mt in 2030 from 10.4 Mt in 2020. Even greater growth could occur in the 2030-2050 timeframe, particularly where all Countries move to Net Zero policies.
The electricity sector represents one of the most substantial opportunities for the aluminium industry in the coming years. The transition to renewable energy will result in greater demand for aluminium because renewable sources have fossil or nuclear sources Sor MW of power) tha over four times more aluminium per installed megawatt than wind power and about 25 times more than coal. In addition, this increase in consumption from renewable sources, again backround of increasing electrification of

Increasing global aluminium consumption. Projections 2020-2030 in Mt per year (CRU 2022)

energy consumption, will lead to an increase in the need for conductive cables for power and its distribution. Although conductor cables are traditionally made of copper, the switch to aluminium is a viable alternative in terms of both cost and physical space.
Construction is expected to show relatively little growth over the next decade with consumption increasing from 21.2 Mt in 2020 to 25.8 Mt in 2030 , mainly driven by infrastructure and new urbanization rather than the use of aluminium for more energy-efficient housing and buildings. Where enved or specific building sandards are encouraged, or spectic bullang standards are appled, demand could packasing sector will increase from 7.2 Mr to 10.5 Mt in 2030 , driven mainly by the rise in 2020 popularity of canned beverages in Noth America Europe, and China. The surge in demand for canned beverages in recent years and the consequent
demand for aluminium from the packaging sector expected to be driven by the emergence of products and increased competitiveness, and perception, against plastic packaging.

The increase in demand for secondary aluminium

The expected increase in aluminium production on a global scale could never be met by secondary aluminium production, for the simple reason that the end-of-life products that will be generated will foneless, even with a reduction in direct and indirect emissions from primary aluminium production, a strong enhancement of secondary aluminium production by reducing all leakage and improving the quality of collection (e.g.
by segregating aluminium from re-melting and refining) will become essential to meet climate goals. Added to these reasons are also those related to the strategic importance of aluminium - one of the critical materials, despite the availability of bauxite reserves - especially at a time of geopolitical and market tensions. On a global scale, therefore, a strong push toward production from secondary aluminium is expected, for environmental and energy reasons and because of the strategic value of the material, which may also lead to criticality in secondary material supplies.
In Europe, where the share of secondary is already high, there is an opportunity to meet the increased needs for aluminium products through ncreased secondary production. According Aluminium Action Plan 2020) at present, the use of post-consumer aluminium from domestic collection in Europe is about 26 Mt (the value obviously does not include pre-consumer industrial scrap or non-Europen scrap im

But an almost equivalent value is generated without being used within the borders of the European Union: about 1 Mt of post-consume scrap is, in fact, exported outside Europe, and about 1.6 Mt of aluminium scrap is not recovered or is exported (legally or ilegaly) in scrap vehicles and WEEE.
By stopping exports and optimizing postconsumer scrap recovery, assuming an increase in aluminium consumption, the post-consumer waste generated could be 6.6 Mt in 2030 and 8.6 Mt in 2050 , an increase of 25 percent and 65 percent, respectively, over 2019. This increase could translate into 2.5 to 3.3 times the amount of post-consumer scrap used in secondary aluminium production in Europe today. The recovery of this important fraction could alow for an hease in seconcary production, Europe from 34 per cent to 25 per cent in 2050 of total production) and especially reducing the absolute share and mount of primay alumium imports from non-European countries. \bullet

Potential for development of the use of post-consumer aluminum and reduction of primary aluminum imports with the increase in the use of secondary material in Europe

The Italian supply chain

Unless otherwise indicated, data is based
on Assomet's annual statistical reports.

Aluminium flows in Italy

taly is Europe's second-largest producer and processor, after Germany, of raw and alloyed aluminium and semifinished aluminium products, but as of 2021, it ranks first by value of foundry castings.
In terms of recycled aluminium production, on the other hand, Italy ranks first in Europe, both in terms of the amount of aluminium alloys formed and the amount of scrap used.
Italian production has historically been scrapbased (similar to the Italian steel industry), but still relevant in the first decade of the 2000 s taveraging 190,000 t/y just under 25 per ce of total production), until the final closure of production plants in 2012.
In 2021, production of secondary aluminium alloys in sizes reached an all-time high of 954,000 tons. In addition, the production of melt-bundle alloys is largely based on secondary aluminium, eaching 770,000 tons in 2021, the highest value in recent years.

Secondary aluminium production, i.e., from recycling, is derived from both internal recoveries (scrap from rolling and extrusion processes integrated with remelting plants) and preconsumer scrap (from industrial processes) and post-consumer scrap (decommissioning of transport vehicles, construction demolition, consumer goods waste, and packaging). A significant share of scrap is imported. Overall, aluminium production is fed by more than 1.7 million tons of domestic waste and scrap, 1.3 million of which is marketed.
The most significant uses of aluminium production are in automotive and transportation (mainly from foundry castings), construction (mainly extrusions), sheet and packaging production (from rolled products), household and office products, and mechanical and electro mechanical engineering.
Most, though not all, semifinished and finished aluminium products are derived from secondary aluminium alloys, the only domestic aluminium production.

Primary and Secondary Aluminium Productio

The economic dimension of the Italian aluminium
 industry

In 2019, the Italian aluminium production industry, based on Eurostat data, was worth 12 per cent of the value of European production and 10 per cent of employment. In the light metal casting sector - which also includes zinc, copper, magnesium, brass, and bronze, but of which aluminium accounts for 82 per cent of production - Italian industry accounted for 18 per cent of production value and 13 per cent of employmen. Taking the two sectors together, in 2019 Haly and 11.5 par European Union.
According to Assomet data for 2021, the sector has a total turnover value of 139 billion sector (up from 12.8 in 2018), mainly composed of (up from 12.8 in 2018), mainly composed of plate and billet production (remelting), foundry
alloy cake production (refining), foundry casting production, and the manufacture of extrusions and rolled products.
The aluminium industrial sector is characterized by the presence of a very small core of mediumsized companies - mostly refiners and remelters and integrated companies in the supply chain and numerous small and medium-sized familyowned companies, especially in casting. There are 25 remelters, 15 refiners and about 50 rolling and extrusion companies operating in Italy, while there are more than 400 aluminu casting foundries.

Italian production of extruded, rolled, and castings for foundries

Italian aluminium sector turnover in 2021 (million euros)

$\ln €=$ million euros

Production value and employment in aluminium production and light metal casting in Europe

The recycled aluminium supply chain

The recycled aluminium supply chain is based on two categories of companies: remelters, which produce the alloys from which extrusions and rolled products are derived, and refiners, which produce the ingots for foundry castings.

Remelters process scrap from plastic processing alloys, thus obtaining new plastic processing alloys. Domestic production is 954,600 tons (2021) and was 749,300 tons in 2019
The scrap feeding the remelters consists mainly of internal scrap (from rolling and extrusion in integrated plants) and pre-consumer and, to a
esser extent, post-consumer scrap. Process losses (as oxidized aluminium) are less than 1 per cent. he main products of remelters are: billets and up to 7 meters in length) from extrusion, for the production of sections, tubes, bars; plates (slabs) from rolling, from which thin sheets (up to 5 microns for thin foil) are obtained.

Refiners process pre- and post-consumer scra for the production of smelter cake alloys and deoxidation aluminium used in steel metallurgy Domestic production is 769,500 tons (2021) and was 697,700 tons in 2019.
he scrap feeding the refiners is derived fro re-consumer scrap from semifinished and manufacturing production, remelters' slag, satt
slag recovery, and post-consumer scrap from demolition and packaging.
Due to the lower purity of the input alloys, the process requires larger quantities of salts and binders and generates average process losses of about 6 per cent on a European basis (but estimated lower for Italy).
The main products of refiners are: cakes (ingots) for foundry, for the production of castings; aluminium for deoxidation in steelworks.

Secondary aluminium production is fed by three types of scrap:

1. 2. Post-consumer scrap, consisting of old scrap, including mixed with other substances (paint, other materials), from demolition,
decommissioning, and separate collection of municipal waste. In 2019, about 582,000 tons of post-consumer scrap is estimated, including the import share; in 2021, post-consumer scrap is estimated at 654,000 tons.
1. Pre-consumer (marketed) scrap, consisting of clean and new alloys in the form of scrap, turnings, and shavings from rolling, extrusion, and foundry processes (similar to those considered as "internal recoveries") and production waste from manufacturng processes of using rolled, extruded, and castings. As of 2019, there were an estimated 476,000 tons of pre-consumer scrap, including mports; by 2021, pre-consumer scrap had reached 650,000 tons.

Remelters - Material balance: recasting, extrusion and lamination (estimates 2019)

Refiners - Material balance: refiners and foundry castings (estimates 2019)

3. Internal (non-marketed) waste from production processes. This refers to the ecoveries of process and pre-consumer scrap that are not marketed (and therefore not captured by statistics) and occur within the same production cycle (such as the recovery of process or salt solution slag) or within the same enterprise if integrated downstream, e.g by extrusion or rolling. The most significant recoveries are scrap, turnings and chips from rolling and extrusion and foundry. Rejects vary according to the type of product, routinely ranging between 20-30 per cent of the finished product. These flows are not statistically recorded and are estimated: as of 2019, the theoretical need for internal scrap is estimate at 627,000 tons.

National collection and import-export of scrap metal
he national collection of aluminium scrap is composed of both post-consumer and preonsumer waste. Domestic pre-consumer waste has an almost total collection rate and, to a significant extent, is considered as internal waste and therefore not marketed and accounted for he collection of post-consumer scrap is composed, with the exception of packaging, of he end-of-life of products placed on the mark even several decades ago. The main source of post-consumer scrap consist of: building demolitions and renovations (windows and doors, facades) and infrastructure decommissioning
piping and piling); vehicle demolitions (cylinder blocks, cylinder heads, pistons, brakes, wheels, heat exchangers) and transportation equipment (trains, subways); packaging (cans, tubs, foil); electrotechnical products (cables) and components of mechanical and hermal apparatus (radiators); waste electric and electronic equip (ar condition (furniture products, lighting, cookware).

Collection and recycling rates vary, depending on the products, from less than 20 per cent (as in the case of thin foil) to more than 80 per cent (construction waste, cables, risid packaging) As valuable a metal as aluminium is, some sectors still experience large waste (and thus metal losses) between waste produced and was collected for recycling.
Domestic collection (post and pre-consumer) is
estimated by the difference between domestic scrap consumption and the import-export balance of scrap (including ingot scrap); between 2016 and 2021, national domestic collection increased, with some fluctuations, from 651,000 to 809,000 tons. In domestic collection, a prevalence of post consumption is esti. ssibl
While for other non-ferrous metals domestic collection covers all or at least a large majority of the requirements (for copper it is 97 per cent), the Italian aluminium industry is a net importer time high reached in 2019 (486,000 tons) and with values very close also in 2020 and 2021 (values understood net of ingot scrap). In economic terms, due to the sharp increase in raw material costs, the trade balance reached its all-time hig in 2021 with a balance of 668 million euros. \bullet

Aluminium for green and circular transition

Comparison of aluminium content by fuel type and car "level"

Aluminium is a key material for the energy transition and circular economy
Because of its durability and almost infinite recyclability, it can be an inherently circular and low-impact material (both production and management in the use phase and then disposal) in multiple applications, including the production of consumer durables and packaging. Because of its technological characteristics, as well as its circularity, it will be one of the critical and fundamental materials for the energy transition, for more efficient and electric means of transportation, for energy-efficient and zeroconsumption building, and for the creation of an energy system based on renewable sources. international demand projections for the coming decades underscore the centrality of energy transition and decarbonization in the development of aluminium demand.

Green mobility

Aluminium has a wide use in transportation equipment. In Italy, just under 40 per cent of production has transportation as its end use, with strong production of engine blocks and other cast components. On a European scale, more tha 40 per cent of aluminium is used for transport equipment, with predominant use for passenger cars, but also important for heavy vehicles, subways, trains, planes and ships.
In motor vehicles, the average aluminium content has risen from 120 kg in 2006 to 140 kg in 2012 to 180 kg today (2019 European average). The main aluminium components are wheels, engine blocks, transmission and, increasingly, also chassis and bodywork.
The ongoing change in the types of components produced from aluminium (which will undergo a further shift with electrification) also means a foundry castings, more rolled and extruded This development - though not sudden and in many

Use of aluminium in the European automobile fleet (2019)

Eco-efficient construction

Construction applications account for about 23 percent of end uses in both domestic and European production. Building products consist European production. Building prod
At present, relevant construction employments are window and door frames, supports for curtain walls, and supports for air conditioning and heating elements.
One of the most industrially relevant uses is window and door frames, where aluminium accounts for about 32 percent of the market by volume and 37 percent by value in 2021 . Since 2015, the metal windows and doors market has been on a positive growth trend. This was
interrupted in 2020, and resumed in 2021 with +22.5 per cent over 2020, reaching 1.7 billion in sales (adjusted for the increase in the cost 0 per cent).
In terms of "standard pieces," fixtures produced in Italy reached their all-time high in 2021, and in value terms they account for more than 25 per cent of the European market (Eurostat-Prodcom data, 2022).
In 2021, sales of aluminium windows accounted for 64.6 per cent of total sales, shutters 11 pe cent, and facades 9 per cent (this is a marginal sector for window and door manufacturers). In 2022, tax incentives determined 51 per cent of metat window and door manufacturers' sales.
ways predictable - will, however, significantly impact the Italian casting industry, which is Europe's leading producer of foundry castings and in particular automotive castings.

With the gradual electrification of the car fleet accelerated in part by the blocking of combustion cars from entering the market from 2035 - the greatest structural change in automotive history willoccur.
Electrification will entail a drastic simplification of components, but also a search for ever lighter and morgy-efficient solutions to reduce battery consumption and increase mileage capacity. The overall impact on the demand for aluminium will be positive, with an expected growth (overal in the mobility sector) of about 55 per cent by 2030 and growing further in the following decades as the existing vehicle fleet is also progressively electrified.
Demand for aluminium, however, will be predominantly directed toward new components, related to electrification itself, as well as to
the "body" of the car, with a further increase in demand for extruded, rolled, and forged aluminium. With the further electrification of the automobile fleet, there will be an increase in aluminium content in all the various automobile segments, from compact and economical cars to premium cars of higher power and cost.

Evolution of aluminium type used in passenger cars with forecast to 2025

element, largely based on the use of aluminium with increasing use in the non-residential sector.

Development in construction will be driven by green conversion and the need for energyefficient buildings, especially in a country like Italy where renovation prevails over new construction (71 per cent vs. 29 per cent of total investment in 2021, continuing a now long-lasting trend), both in residential and non-residential. A date, after all, already made evident by the fect of the home bonus and super bonus, which have seen a growth in the production and domestic consumption of building elements.

The increasing use of aluminium as a material for green home construction will depend on four elements (EA 2019, Wang 2015).
Energy efficiency - The use of aluminium optimizes the energy efficiency of a building by helping to control and manage factors related to heating, lighting, cooling, and ventilation. framing systems, curtain walls, windows, light framing systems, curtain wals, windows, light the installation of solar thermal and photovoltaic panels of which aluminium is quantitatively the largest component.

ndoor environmental quality - Several elements affect the comfort of those who live or work in a building, among them fresh air, natural light and views. The use of aluminium contributes to this in the form, for example, of folding windows or sliding doors, which improve the quality of airflow, the amount of natural light entering the building, and provide unobstructed views that enhance the quality of life.

Life cycle of materials and resources -

Aluminium as a building material is a very sustainable solution during its life cycle, from design to construction, use and demolition. Since it has a long lifespan, secondary aluminium can be used, and it is fully recyclable.

Innovation - The durable, flexible and robust nature of this metal lends itself to new innovative approaches to building design and construction. These properties allow for customization and enable architects and designers to develop innovative green building solutions.

Thus, in green building, aluminium finds multiple uses: window and door frames, structural elements such as curtain walls, roofing sheets, aminates for ceilings, profiles or castings for air conditioning and heating systems. Light weight, corrosion resistance, stress resistance, and conductivity are particularly relevant in these ypes of uses.

The greater environmental sustainability of aluminium window frames

The degree of environmental

 sustainability of window frames has been the subject of several studies. When lifecycle analyses consider fult service life, maintenance, and end--herial types, the impacts of auminium window frame of than those of other matesial loptions for all types of environmental impacts. An important factor in the benefits of aluminium - even considering a prevalence of primary aluminium (67 per cent in this study) - is the product lifespan and the impact of maintenance of the window frame itself. in particular, regarding climatealtering emissions (the so-called global warming potential), even the worst-case management scenario or aluminium is preferable to any scenario for other materials. An aluminium window frame with medium maintenance has 68 percent lower climate-altering emissions than th best-case scenario for PVC and 50 percent lower than the best-case scenario for wood.Value of demand for windows and doors and façades in the construction sector (Italy, 2021)
Energy-efficient uses of aluminium in construction

Endlessly recyclable
 packaging

Aluminium is used in packaging for the production of containers (typically cans and canned goods for beverages or solid food, but also larger containers), trays and tubes for both food and non-food use, foil for bulk packaging or as a component of poly-bags.
Aluminium has suitable characteristics for optimizing both product preservation (ensuring a high shelf life and thus less waste) and rationalization of transportation and material use ber the of ths light weight).
ornificant efficiency imp, here has been a significant efficiency improvement in packaging, reduced material sane performance - has per cent in most applications, itian applications.

- including converter foil - exceeds 200,000 -ons per year and has a turnover of more than 3 billion euros. Apparent use of packaging is around 130,000 tons, but these quantities do not correspond to those actually consumed in Italy (i.e., those net of imports and exports of food and packaged goods), which are essentially stable between 70 and $80,000 \mathrm{t} / \mathrm{y}$. The per capita consumption, just over $1 \mathrm{~kg} / \mathrm{inh}$ abitant, is in line with France, but less than half of the UK and Nordic countries.
The predominant use of aluminium, according to surveys by the Italian Packaging Institute, is for beverages (about 64 per cent), food (about 20 per cent), and cosmetics and pharmaceuticals (about 16 per cent).
Packaging grade aluminium has an extremely short lifespan, conventionally within a year.
High recyclability now makes aluminium a more sustainable packaging material than others. Once the aluminium can is collected, the reprocessing and heat treatment) is 90 per (sorting, Pent (Eunomia 2021) The process losses for aluminium (approx 10 per cent) are far lower than those known for glass (33 per cent) or Pet ent) or Pet (34 per cent).

Recent research by Eunomia (2021) showed that aluminium cans are, on a global scale, the most collected beverage packaging, most effectively recycled net of losses, and with the highest closed oop (i.e., same use) recycling rate.
This performance makes aluminium the most "circular" beverage packaging material.
In Italy, with a very high overall recycling rate of aluminium packaging (including not only cans, but also semi-rigid and flexible packaging, from trays to sheets), an even more radical path can be taken, with a trending goal of 100 per cent recycling of packaging.

However, one of the problematic elements for aluminium packaging - and more generally for all packasing - is the presence of poly-bundles, which are difficult if not impossible to recycle. For the 100 per cent recycling result to be chieved, action must be taken in three those where the "loss" of packaging for recycling is realized. First, separate collection, which must become even more efficient. In the Italian context, the focus must be on the interception of semi-rigid and flexible packaging, since for cans and rigid packaging the collection rate for recycling is now close to 100 per cent. It is essential to conduct regular and targeted recycling campaigns aimed at changing consumer behaviour.
Second, aluminium recovery from residual waste treatment needs to be implemented. The waste of aluminium in Italy is evident in the mechanicabological treatment network precisely becaus of the absence and inadequate management of non-ferrous metal interception technologies. Interventions to make these plants efficient are technologically simple, for example, the provision of at least two high-performance eddy current separators in sorting plants.
Finally, recovery from slag and bottom ash should be maximized. For aluminium packaging that end up in waste-to-energy plants, with the exception (which aluminium is captured by incinerator bottom ash, which, if subjected to appropriate separation reatments, can allow for high recovery, addition to that achievable with separate collections.
collection RATE

RECYCLING
RATE
 RECYCLING $\underset{\text { RECYCLING }}{\text { CLOSED LOOP }}$

$\mathrm{Mt}=$ million tons

Consumer durable goods

Aluminium has a large use in furniture and household products. For household, kitchen and anitay products alone (which includes part of the 20 , products), Italian production in 2021 Was 200,000 tons (it was 128,000 in 2013), with apparent consumption (production + import - export) of 172,000 tons. This is a strong Italian specialization in terms of both production and (to a lesser extent) consumption.
Aluminium is used in the production of furniture, bookcases, chairs, tables - for indoor and outdoo makers, and hygiene products. In the production
of kitchenware, it is used both pure and as a base non-stick pots and pans with Teflon coatings or other materials; in combination with steel, it is ookers. hese us
actors, are partly driven by environmental outside Europe. The possibility of producing goods that are entirely from recycled (and in turn ecyclable) could become another element in the expansion of this area of use, with an important role for Italy.
The life cycle of these consumer items is variable, generally between 3 and 20 years. The waste stream confers partly in municipal waste, partly in

Renewable Sources

Aluminium is widely used both for the
manufacture of power generation plants and for storage and distribution technologies. The supply of aluminium is therefore critical regardless of the intensity of decarbonization development, but it becomes critical in scenarios of increased enewable development.
Aluminium is the mineral of which the largest production is expected for renewable development, with production cumulatively between 150 and 320 million tons between now and 2050, equivalent to $6-13$ per cent of annu production in 2019 under the least extrem scenarios.
The intensity of aluminium use (in terms of kg per kW of power) in renewables is extraordinarily bin Alworks is also high. There in distribution etworks is also high. Therefore, in any energy increased use of electricity, there will be a marked increase in the use of aluminium. the main demand for aluminium
to the development of solar, particularly selated photovoltaics. Aluminium accounts for about 88 per cent by weight of the metals used in the installation of photovoltaic panels (mainly frames
and accessories) and is also used consistently in solar thermal and concentrating solar power. But it is also used in most other low-carbon technologies, such as wind, energy storage, and hydropower.

The size of the additional demand for aluminium however imposing, will depend on two factors: the speed and intensity of deployment and the composition of non-tossil energy sources in the new energy scenarios; and, to a lesser extent, on technological developments in non-fossil energy production and distibution, win hevitable uncertainties in long-term assumptions.

Energy transition scenarios are rapidly evolving toward zero-emission targets. For example, the first IEA $2^{\circ} \mathrm{C}$ scenario in 2017 projecte renewables to account for 26 per cent of energy demand in 2030 and 46 per cent 200. By 2022 on primary energy demand and about 88 per cent renewables in electricity generation in 2050. In this new context, the forecast of installed capacity of electricity generation from renewables also grows, reaching $14,458 \mathrm{GWh}$ of solar (in addition to 426 GWh of concentrated solar) as well as 8265 GWh of wind.

Other sources, e.g., Bloomberg's New Energy Outlook report (2021), identify a Green Scenario more strongly oriented toward electrification
(121,000 TWh of generation is expected by 2050 , compared to 71,000 TWh in the IEA scenario), with an 84 per cent share of renewables. There is a further increasing installed capacity for both solar ($19,800 \mathrm{GW}$) and wind (up to $25,000 \mathrm{GW}$). solar ($19,800 \mathrm{GW}$) and wind (up to 25,0 .
Some scenarios, developed from within PV manufacturers such as the International Technology Roadmap for Photovoltaic (VDMA, 2022), predict even greater penetration of PV , up to $63,400 \mathrm{GW}$.
Less significant, but not insignificant, are also the impacts related to the prospects for direct thermal power generation. In a context of strong electrification, the expected growth of solar thermal is scaled back. Nonetheless, both IEA (2022) and IRENA (2022) see significant increase - from 714 million square meters of solar thermal in 2020 - in both residential and industrial uses to reach 4-6.3 billion square meters of solar collectors for an installed capacity of between 2.8 and 4.4 TW by 2050 . This growth translates, in terms of aluminium demand, to a cumulative 8
-12.6 Mt to 2050 . -12.6 Mt to 2050.
The other energy source that has a non-marginal use of aluminium is wind power. The prospects for wind development have also increased over
the years (although less than for solar, due to the years (atthough less than for solar, due from 3.3 TW to 2050 in the 2017 IEA $2^{\circ} \mathrm{C}$ scenario to values of just over 8 TW in Irena's scenarios and the IEA's Net-Zero Emission (2021). Under assumptions of massive electrification (NeoBloomberg report's Green scenario), however wind market could grow to 25 TW by 2050.

In the development of renewables, electrification of energy services plays an important role. In all scenarios, electricity use in industry, transportation, and buildings increases its share 2050 from 19 per cent today.
Under hese scenarios, the renewables market would develop exponentially. While the first 1,000 gigawatts of wind and photovoltaics took 20 years to mement, getting to net-zero emissions in to to be deployed
three decades. extent, wind will be the deciding foctor a tesser extent, wind will be the deciding factor in the amount of aluminium required.
A less significant, but not insignificant, impact is also expected from technological developments in panel production (particularly the spread of rooftop vs. ground installations and the size technolosies. technologies.
Depending on estimates of aluminium
requirements per MW of power1, these estimates can vary significantly.
Assuming intermediate values of specific Al use

Aluminium intensity of different energy sources (t Al / MWh)

12,9 t Solar

3,6 t Off-shore wind
-
$2,4 \mathrm{t}$ Wind
-
-
$0,4 \mathrm{t}$ Gas
-
$0,1 \mathrm{t}$ Hydro
。
$0,03 \mathrm{t}$ Nuclear
$t=$ tons
per MW, consistent with CRU estimates (equal to $12.9 \mathrm{t} / \mathrm{MW}$ for PV and $2.4 \mathrm{t} / \mathrm{MW}$ for wind), one can estimate a cumulative requirement ranging from 150 to 320 million tons in scenarios close to or equal to zero emissions in 2050. This translates into an annual requirement between 5.1 Mt and 10.6 Mt .
More extreme estimates of PV use (60 TW of TRPW, 2021) could lead to a cumulative demand of about 500 Mt .
inally, demand for renewables plants should be supplemented by demand for electrical distribution networks, which today is the main source of aluminium use in the power sector. -

Even among recent
sources, there are significant differences
in the estimation of aluminum content per MW of power in photovoltaic panels: ranging from 25 t/MW according to the World Bank (2017) to 12.9
t/MW in the CRU estimate t/MW in the CRU estimat Aluminium, and down to an estimate (assuming maximum photovoltaic diffusion of 63 TW) of study (2022). For wind power, the estimates, on the
other hand, are other hand, are more convergent, ranging from
$2.4 \mathrm{t} / \mathrm{MW}$ (onshore) to 3.6 t / MW (offshore) according to CRU (2022) and approximately 0.5 to 3.5 t t MW according to the JRC
EU (2020).

Distribution and connection electrical uses

he considerable expansion of power grids effect of electrification of processes) will also require a large quantity of minerals and etals. Copper and aluminium are the two main materials used for wires and cabling and also in transformers. It is estimated that about 150 Mt of copper and 210 Mt of aluminium are "locked up in power grids operating in the world today. In 2020, an estimated 5 Mt of copper and 9 Mt of aluminium were used in power grids, more than 55 per cent of which can be attributed to distribution networks. Annual demand for aluminium for networks will grow from 9 Mt in 2020 to about 16 Mt in 2040 (in the IEA SDS To reduce network costs, partial replacement of copper by aluminium is possible and likely,
where technical and regulatory conditions permit. With wider use of aluminium in underground and submarine cables, demand for aluminium is expected to reach up to 21.8 Mt annually (IEA, The Role of Crtical Minerals in Clean Energy Transitions 2022).
In the most plausible scenarios, annual demand for aluminium in the electric power sector could roughly double. The additional annual demand in the electrical distribution and connection sector is roughly equivalent to or greater than the additional demand for aluminium in the production of renewable facilities. Overall, annual consumption in the electricity sector could become comparable with that - stil increasing - in the transportation and construction sectors.

Aluminum consumption in various scenarios of development of renewable energy sector

Decarbonizing production

The expected growth in aluminium consumption, driven primarily by the energy transition, will also require deep decarbonization of production processes.

Global emissions from the industry

Total climate-changing emissions (CO2eq) from the sector amounted to 1071 Mt in 2019 (a similar value is also estimated by IEA for 2021), up 88 per cent since 2005. The size of emissions from aluminium production is just under three times those of Italy.

Emissions derive 64 per cent from electricity consumption, 26 per cent from industrial luminium production, and 3 per cent from erfluorocarbon (PFC) consumption in electrolytic processes (IAI 2019 data)

Emissions for primary production are worth 94.7 per cent of total emissions (electrolysis alone is worth 75 percent of total emissions), while secondary aluminium production is worth less than 3 percent and semifinished and castings production is worth 3.3 per cent.
The origin of emissions is 64 per cent from electricity consumption. But an important share of these emissions is in the direct control of

$\mathrm{Mt} \mathrm{CO}_{2}$ eq. $=$ million of tons CO_{2} equivalent

the aluminium industry, as 55 per cent of the energy consumed is self-generated rather than purchased from the grid. The share of selfgeneration is particularly high in Asia (>65 per cent in China, >95 per cent in the rest of Asia) and more moderate in North and South America (about 45 per cent). In contrast, in Europe, most electricity is purchased from the grid.
The structure of energy sources in the aluminium sector is therefore substantially different from th and aso shows strong resional differences.
Overall, coal (56 per cent) and hydropow (30 cent), ie the two traditionally chapowt (30 per felectricity production, are prevalent in the aluminium system.

Over the past 10 years, however, the share of renewables (particularly hydro) has declined by nearly 10 percentage points, while the share of coal has grown. This change has resulted from the growth of Chinese generation (whose electricity production still depends 80 per cent on coal). In Europe, North and South America, hydropower provides more than 75 per cent of the electricity consumed in the aluminium sector he sector's energy autono associated with aluminium production CO_{2} emissions in coal-fired primaty
 emissions are $169 \mathrm{CO}^{2} / \mathrm{taluminium}$ and European emissions are $6.7 \mathrm{t} \mathrm{CO}_{2}$ eq/ t aluminium.

But the substantial difference is between primary production and secondary production, from recycling.
Emissions per ton of aluminium produced from recycling ($0.6 \mathrm{tCO}_{2}$ eq/t aluminium) are 3.6 per cent of those of the world's average primary production. Secondary production would have a unit emissí "carbs free" electricity-fired primary production On a world scale, CO_{2} emission intensity in the primary production CO_{2} emission intensity n modest reduction of 6 per cent in about 15 years (from 16.9 to 15.9 tCO O_{2} ea/t Al), mainly due to the higher 16.9 to $\left.15.9 \mathrm{tCO}_{2} \mathrm{e} / \mathrm{f} / \mathrm{A} \mathrm{A}\right)$, mainly due to the higher
share of production coming from China and other fossil-intensive countries, particularly coal.

European emissions for aluminium production

In Europe, the trend differed, with more pronounced reductions in emissions in all the various sectors of both primary and secondary aluminium production.
In primary aluminium production in Europe, there has been growth in the use of renewables (from
50 per cent in 2010 to 70 per cent in 2015), and cimate-changing emissions from PFCs have be further reduced (down 97 per cent compared to 1990). As a result, all environmental indicators
of primary production in Europe have improved. Between 2010 and 2015 (last complete data released) $\mathrm{CO}_{2} \mathrm{eq}$ emissions per ton produced decreased by 21 per cent from 8.5 to $6.7 \mathrm{t} \mathrm{CO}_{2} \mathrm{ec}$ per ton of aluminium.
In semifinished product production and production from recycling, there has also been generalized improvement. In production from remelting, there was a 9 per cent reduction. However, in refining (smelters), where Italy is the European leader, the improvement in performance (driven by production efficiencies and energy sources) amounted to a 14 per cent reduction in climate-altering emissions (in 2017/18 compared to 2010) per ton of aluminium produced, down to $438 \mathrm{~kg} \mathrm{CO}_{2}$ eq. ven in production from recycling, unit emissions (pert of aluminium) of CO_{2} eq from secondary production in Europe are just over 50 per cent

The prospects for reducing emissions

lignment with a Zero Emissions scenario for the aluminium sector, particularly for primary roduction, requires a technological leap, which annot be achieved by progressive optimizations f existing processes alone.

CO_{2} eq emissions avoided by replacing the import of primary aluminum with aluminum recycling in Europe

hough energy efficiency, decarbonization of power generation and scrap-based secondary production are important for alignment with the Zero Net Emissions scenario by 2050, they alone cannot decarbonize the aluminium sector, which for objective reasons-will also have to resort to further increases in primary production The IAI scenario for moving toward zero unit emissions from primary production (from 16.1 to $42 \mathrm{tCO}_{2}$ eq/ Al) by 2035 , and then to unit emissions of 0.5 tCO ealt Al for primary production and 0.1 for secondary and emifinished production (for which power system energy conversion is a sig of the reduction).

The necessary change requires that the groundwork for revolutionary technologies be laid by 2030. In recent years, however, considerable progress has been made on this front Currently almost all primary aluminium casting uses carbon anodes that release CO_{2} as part of the electrolysis process. These anodes can be replaced by inert anodes that release oxygen as they decay. Durin 2021, industrial-scale production of primary aluminium with inert anodes was successfull tested at plants in Russia and Australia. Commercialization and early implementation of this technology are critical in the coming years to come in line with the Net Zero scenario, which sees inert anodes used for just under 10 per cen of primary production by 2030 .
In addition, it will be important to develop alternative methods for heat production in alumina refining, which currently relies mainly on fossil fuels, relying on biomass or green hydroge or renewables such as concentrated solar. Another method for reducing emissions from aluminium smelting is through carbon capture and storage (CCS) technology, although this is much more difficult to achieve for aluminium than for other industial CO_{2} concentrations
Given the high incidence of electricity consumption, the "carbon free" conversion of the powucing emissions from aluminium prodio itself as well. itself as well.
Emissions can be further reduced by increasing the percentage of recycled production. On a global scale, the share of secondary production (excluding domestic scrap production) for most of the past two decades, but has recently seen modest increases: in 2021 the share was 34 per cent.
However, primary production will still remain important in the future, as more aluminium will be needed than was produced in the past, so the availability of scrap will remain insufficient to meet demand solely from recycled production, even if collection rates are maximized. For Italy, however, given the absence of primary production, optimizing scrap recovery and internal EU consumption of all scrap (now partly exported to non-EU countries) is of crucia importance for the development of the production system.
For Italy and Europe, even with a substantial increase in aluminium production, the elimination of exports (legal and illegal) of aluminium outside and internal post-consumer recycling could allow in EA's estimates, to reduce primalum imports by 37 per cent to 2030 . imports by 37 per cent to 2030 .
these imports has not ong that reducing and economic benefit but also a geopolitical autonomy implication.

Urban aluminium mines in Italy

Processing scraps on one hand and waste and used products on the other constitute the large secondary aluminium mines.
These mines have high intrinsic value, both economically and environmentally.
Processing (pre-consumer) waste is recovered almost in its entirety.
For post-consumer waste, on the other hand, a reconstruction of the flows can only be done at present with some complexity, partly because of he possibility that there is a large gray area of recovery and trade, wh for fiscal reasons.
With more reliability, the amount of postconsumer scrap generated in urban areas (packaging, consumer durables, WEEE) can be estimated. Not all of this waste-at least apparenty-is actualy mines and illeed, urban sech The ame somill ich. The overall apparent loss of aluminium is about 40 per cen
specially among the streams that are delivered into the municipal waste circuit there is strong luminium packasing foil and other flexible and semi-rigid packaging household and furniture items, components of waste electrical and electronic equipment, and aluminium in incineration slags are only partially recovered. Another seemingly critical area in terms of recovery potential (subject to the possibility of incomplete data) is the end-of-life of motor vehicles.

Post-consumer scrap in the municipal waste stream

There are four main streams of aluminium products (or at least those with a share of aluminium) potentially flowing into waste aluminium) potentially flowing into waste: packaging, foil (non-packaging), household
consumer goods and furnishings, and WEEE (waste electrical and electronic equipment, where aluminium generally makes up a minority share of the total product).

Packaging - The amount of packaging placed on the market is estimated at 78,400 tons. Th quantity of aluminium packaging is estimated annually by CIAL considering the apparent domestic consumption of packaging, adjusted for the quantities of packaging exported and imported with products (similar to what is done for other types of packaging).

Foil - Sheet and roll film, not classified as packaging, although functionally similar to flexible packaging, estimated at 14,400 tons.
Flexible classified packaging is assumed to be 40 percent of total sheet and film placed on the market (CIAL, annual report). The total amount of luminum film included in compsite ack predominantly made of other materials) is thus 24,000 tons. The total apparent domestic consumption of aluminium foil up to 0.2 mm (200 microns) was approx 150,000 tons in 2021
including 54,000 tons of converter foil (however, the apparent domestic consumption does consider import-export of full packaging).

Household and furniture waste - The quantity of these products, generally classifiable as consumer durables, is estimated at 41,175 tons. The value is estimated as equivalent to the average apparent consumption in 2005-2007 (estimated 15 -year average lifespan) of Prodcom codes 25991255 and 25991257. aluminium products for sanitary and hygienic use are not included here. This waste stream is likely to be delivered not only in undifferentiated waste (or for some minor components in the separate collection of aluminium packaging as a similar stream), but also in buky waste collected separaty), delivered directly to Collection Centers.

WEEE - The theoretical amount of aluminium in WEEE calculated is about 33,000 tons. The estimate here is based on the aluminium content recovered from WEEE treated by the Erion Consortium for groupings R1-R4 (representing 69.2 per cent of total household
WEEE) and Ecolamp for grouping R5. The content of aluminium recovered in each grouping was multiplied by the previous three-year average of put on the market (this is how current regulations estimate "end-of-life" production). Note that the theoretical aluminium present in WEEE tends to be underestimated because it corresponds only to the actual stream recovered, but the amount placed on the market at end-of-life may be overestimated.

The total amount of aluminium generated as potential waste in municipal waste is thus 166,720 tons.

The recovery of postconsumer aluminium from municipal waste

Recovery of aluminium products for recycling (or partly for energy recovery), through separate collection and thus before treatments on Residual Urban Waste, is estimated on the basis of recovery data of packaging, WEEE, and bulky waste in separate collection or at Collection Centers.

Packaging - Total recycled packaging collected before the formation of Residual Urban Waste amounted to 46,653 tonnes/y in 2021 while RD sorting (primarily glass) amounted to 4,880 tonnes/y Residual packasing contained in RUR amounted to $26,687 \mathrm{t} / \mathrm{y}$, from which, $1367 \mathrm{t} / \mathrm{y}$ were recovered for recycling consisting of recoveries in TMBs and incineration slag. Total packaging recycling corresponds to 67.5 per cent of the released for consumption.
Based on commodity analysis, CIAL certified the recycling of $26,452 \mathrm{t} / \mathrm{y}$ of cans, accounting for 90.4% of the released for consumption of cans. Cans account for 56.7% of packaging RD and 50\% of total packaging recycling. The least collected type of packaging-and with the lowest recycling rate-is flexible packaging.
These values correspond to the amount of packaging sent for recycling as determined by Cial, which includes not only urban separate collection, but also separate collection and mechanical sorting of caps and post-Rd deliveries from TMB and slag. The separate collection values do not include extraneous materials and similar fractions (non-packaging proper). Similar fractions, according to the commodity analyses

The aluminium cycle in municipal waste: recoveries and dispersion

carried out on separate packaging collection, a mount to 5.9 per cent of the total collected in 2021 and correspond to $2,925 \mathrm{t} / \mathrm{y}$.

Similar fractions - Similar fractions are aluminium products that are not considered as packaging (they can be either household items, from coffee pots to cookware, or aluminium film that cannot be classified as packaging), bu collected together in urban collection. Based on the commodity analysis they are estimated to be $2925 \mathrm{t} / \mathrm{y}$.
Bulky waste - The estimate of 19,834 tons of aluminium products recovered through the bulky waste and collection center circuit (assumed to consist of "aluminium products for household use and hygiene") adds up the share of direct ferrous fractions in collection centers. Out of total stream of $900,700 t$ (2020) bulky items for recovery (Ispra 2022) of mixed of aluminium was estimated to be 1 percent of the total, equivalent to about $9,000 \mathrm{t} / \mathrm{y}$. To this quantity
was added that relating to deliveries to collection enters of "non-ferrous metals," estimated by extrapolating the figure recorded in the Lombardy region and assigning aluminium a share of 75 per cent of the total, to obtain a total estimate of $10,827 \mathrm{t}$.

WEEE - The amount of aluminium recovered from WEEE is estimated at 8930 tons. The figure not available from CDC WEEE, was estimated for groupings R1-R4 on the basis of the recycling rate (3.1 per cent, 1.7 per cent, 1 per cent, 3.6 per cent of the WEEE stream, respectively) detected by ERION (the most relevant collective consortium of the groupings); for grouping R5 the recycling
rate detected by Ecolamp (equal to 5 per cent). rate detected by Ecolamp (equal to 5 per cent).

otat recovered for recycling before the formation of

 residual municipal wasteIn total, we estimate 83,222 tons of aluminium ecovered for recycling (net of foreign fractions) before the formation of residual municipal waste

Recovery from residual waste management

The residual stream of aluminium waste is almost entirely transferred to Mechanical or MechanicalBiological Treatment plants and, for the part not recovered or degraded, sent to incineration and co-firing or to landfill.
Specifically, in accordance with the breakdown determined by Ispra on urban residual waste, it is estimated that waste sent to TMB is 71.3 per cent, waste sent directly to incineration is 25.2 per cent, and waste sent directly to landfill is 3.4 per cent. Of the waste sent to TMB-an intermediate treatment-unvalued or non-degraded residues (for aluminium, these are equal to input minu recycling recoveries) 40.8 per cent is sent to aluminium sent to TMB in 2021 is estimated to alum. 522 tens From this 2021 is estrimate to ecovery and then subsequent sending partly to incineration or CSS treatment and to landfill CIAL's estimated figures for aluminium from TMBs are $1319 \mathrm{t} / \mathrm{y}$ in 2021 ($993 \mathrm{t} / \mathrm{y}$ in 2020). These are exceptionally low values considering the amount of aluminium theoretically present
in municipal residual waste. Of the total TMB, aluminium interception is 2 per cent of the expected aluminium in the waste.
In total, aluminium waste sent to incineration, 44,861 tons*.

From the incineration-initiated stream, there are two forms of recovery: aluminium slag nodules; energy generated from the oxidizable fraction of aluminium.
Regarding recovery from slag, the estimated amount is 5880 tons (the potential recovery could be about $28,000 \mathrm{t}$; however, the recovery for recycling assumed by CIAL, as packaging, is only 48 t in 2021, but this is primarily due to the failure to quantify material recoveries from slag and ash). The fraction of oxidizable aluminium subject to energy production and recovery is estimated

Loss of aluminium

Aluminium loss is quantified as the amount of aluminium potentially present in municipal wast and not recycled or recovered (oxidized) as energy. Out of a total of 166,720 tons of municipal aluminium waste, loss is 39 per cent (65,000 t), while recycling is 54 per cent ($90,000 \mathrm{t}$) and energy use is 7 per cent $(11,000 \mathrm{t})$.

An alternative calculation of the presence of aluminium in municipal residual waste

Commodity analyses of waste generally do not have high reliability, as they are often carried out on a limited sample whos epresentativeness is not known.
Moreover, in the structure of the commodity analyses, the aluminium item is rarely highlighted.
However, there are some recent and significant commodity analyses from which it is possible to infer-at least as an "order of magnitude" the specific presence of aluminium in residual municipal waste, i.e., net of separate ollections.
Commodity analyses are routinely conducted n the so-called dry or undifferentiated fractio is not included (where important shalky of household aluminium and also WEEE should be found).
Based on these data, it can be estimated that the presence of aluminium in residual urban waste varies between 0.3 per cent (Bolzano, 2020) and 0.75 per cent (Veritas, Venice, 2017) These data also show that in urban residual
waste, the ratio of aluminium to total metals ranges from 16.5 per cent (Bolzano) to 50 per cent (Veritas). Oher, higher estimates come from areas with lower separate collection rates. Overall, the window for this estimate is very wide - from 30,000 to $197,000 \mathrm{t}$ - but intermediate values, such as Veritas (Veneto)'s value of 0.75 per cent of urban residual waste, are $79,0000 \mathrm{t}$ and therefore fully consistent with our "top down" estimate of about $83,000 \mathrm{t}$ of aluminum in tesidual waste.
A furter and ("Assean can be based on the IPLA assessment (Assessment on the in the year 2021") of the a mount aminiu in waste fed to waste-to-energy and alternativ fuel plants. fuel plants.
Relating the IPLA estimate to the total of 106 million tons of residual municipal waste (part of which goes to landfill after TMBs), this would give an estimate of $88,263 \mathrm{t}$ of aluminium in residual municipal waste, which is slightly higher than the estimate ($83,000 \mathrm{t}$) obtained by Top-Down method.

Separate collection and recycling: methods and technologies

fourways.
chat aluminium, steel and plastic
packaging), which is now the most common
mode;
heavy multimaterial (aluminium, steel, glass and plastic packaging), which is still present in some areas of the country, but is shrinking; glass and metals (aluminium, steel and glas packaging), which is mostly widespread in street mode;
mono-metals (aluminium and steel), less widespread and present only in some areas of the country.

Since aluminium collection is always joint with other materials, quantification of the aluminium
collected occurs downstream of sorting operations
waste and of Non-ferrous to Ferrous. The share of Non-Ferrous recovered ranges from 0.01 per cent of the waste to 0.21 per cent of the treated waste, the median being 0.06 per cent.
For ferrous metals, the variability is less
pronounced, although it goes from 0.1 per cent to 4 per cent, with an average value of 1.3 per cent, which, although lower than the expected amount of metals, is still at least in the lower end of the expected recovery window.
The inefficiency of the metal recovery system and, in particular, of non-ferrous metals in mechanicalbiological treatment plants is responsible for the dissipation of a significant amount of aluminium.

The inefficiency is also evidenced by the fact that in 2010, with only 13 TMB plants with ESC sorting, metals. Despite the evidence of aluminum was and despite the good valorization of aluminium, TMB plants have remained plants without a recovery and recycling section.
Based on the estimates of this study, about 60,000 tons of aluminium is expected in the residual municipal waste sent to TMB, an amount far exceeding that of cans alone. Of these, about 2 per cent are found to be recovered either due to the absence of devices or inefficient use of devices.

Mechanical recovery from municipal waste

Thesovery of alumium- and other nonferrous metals - takes place through ECS separators based on the principle of induced (or passive or Foucault currents) generated by a rotating magnetic field.
ECS separators are widely present in multimaterial sorting plants, between plastics and re rarely present in TMB (mechanical-biotog fretel) pla from (hich, just under 10 mill bulky waste recovery plants.
out of 132 operating mechanical and mechanical-biological treatment plants, based
data provided by the plants themselves, there was a presence of non-ferrous metal recovery in only 25 of them, which treated a total of 2.6 million tons of waste (27.3 per cent of the national total in TMBs). In these 25 plants, the total recovery of non-ferrous metals was 1451 tons and the tota ecovery of ferrous metals was 32,760 tons. CIAL estimates that about 65 percent of the Noneminium recoved from TMBs correspond 93 tons in 2020 . This value is 0.04 per cent of the aste treated in the 25 TMBs.鲑 The values recorded show a very strong variabil
both in the ratio of Non-ferrous to Total treated

CIAL estimate on the inderpendent collection.

Aluminium MSW Management (t and \%, 2021)
 $\mathbf{1 1 . 5 2 5} \mathbf{t}$
energy recovery

Energy recovery

Heat treatment of aluminium oxidizes part of the aluminium, particularly the thinner component (film and thin foil). In the oxidation process, alumini calculated to be equivalent to $31 \mathrm{MJ} / \mathrm{kg}$, which is conversion thermal recovery orecrical is differentiated according to the products and their thickness. Experimental estimates identify an oxidation rate for packaging materials ranging from 59 percent for foil to 9 percent for cans. For other aluminium items, the values for cans can be conservatively assumed.
Of the total aluminium waste sent for energy recovery (direct or as CSS), the energy content is about 342,000 thermal GJ. Oxidizable waste is $11,039 \mathrm{t}$ out of an input of about 45,000 tons. Actual energy recovery, with current yields, is estimated at 15.9 electric $G W h$ and 68,000 thermal GJ. \bullet

Recovery from municipal

 waste slagDuring incineration processes, only a fraction of the aluminium is oxidized and releases energy. The remaining portion of unoxidised aluminium metal, theoretically available for recycling, is found in bottom ash (slag), fly ash, and reaction salts and deposits.
Thighest content of metalic aluminium appears to be found in the non-fine fractions (greater than 0.5 mm) of bottom ash. the percentage of theoretically recoverable aluminium varies according to the type of material: from over 80 per cent for cans to 51 per cent for semi-rigid to 27 per cent for foil (Biganzoli, Grosso et al, 2012, 2014). For products other than packaging, the yields characteristic of cans are considered applicable. On the total incinerated waste, based on waste composition and separation rates, a potential recovery of up to about $27,000 \mathrm{t} / \mathrm{y}$ can be estimated, compared to the $1,053,000$ of in 2020 (Ispra), which is about 25 per cent of the senerated slag (a value in line with European-level estimates of 2.3 per cent). Regarding recovery from analysis available (Ispra 2022, on 2020 data)
reports only one amount of direct recovery of ferrous metals from slag (amounting to 25,049 t). However, aluminium recovery is usually carried ut in third-party plants that specialize in slag and ash management. In 2019, 874,000 t of on-hazardous slag and bottom ash were sent or recovery treatment (at third parties). Since specific data is available on the fractions covered from these treatments, we assume an 0 inium recovery rate of 0.7 per cent (similar to that used in 2013 based on data from some plants), equivalent to 5880 t .
The theoretical recoverability can only match the actual recoverability if properly designed ECS systems are in place to intercept the different particle sizes. At present, the recoverability recorded by some plants appears significantly ower than the theoretical one.
In fact, the estimated recovery potential is considerably higher than what is apparently he slag and with inadequate technologies) or 16,800 t were recovered from incineration slag in Germany and 31,997 t in France and, in 2018, $25,057 \mathrm{t}$ in the United Kingdom.

Recovering aluminium from car dismantling: a source only partially exploited?

Motor vehicles constitute a major source of aluminium scrap. The aluminium content in motor vehicles has gradually increased over the years.
years.
In 2020, the average age of cancelled (scrapped) vehicles in Italy was 16.4 years. The reference fleet can therefore be considered to be that We should consequently estimarl an average We should consequently estimate an average kg/vehicle Based on the cars scrapped, this Sould translate to about 100 to 120,000 tons shumina of aluminium.
The aluminium actually recovered is far less than expected. This is a common figure for all European
countries. A study recently conducted for uropean Aluminium (IRT M2P, 2021) confirms the large deviation between expected and actual aluminium recovery, in the order of about 60 per cent. This is due to a multiplicity ffactors. Firstly, from the fact that the "decommissioned" car fleet in Europe does not have the same composition as the "scrapped" car fleet in Europe, because within the fleet sent for scrapping (in Italy as in other European counnes) (C D), which cave higher a entent, (C, D), wich have a higer aluminium , the end of life to countries outside Europer the end of life to cou

Moreover, the amount of aluminium apparently recovered in Italy is similar to that found in France, where the available analytical véhicules hors d'usage) quantify the presence of non-ferrous metals at about $44 \mathrm{~kg} / \mathrm{veh}$ icle predominantly, about 80 percent, consisting of aluminium, excluding electrical beams). Italian auto dismantling plants processed $1,217,515 \mathrm{t} / \mathrm{y}$ of vehicles in 2020 (it was $1,292,79$ t in 2019).
In 2019, the last year for which we have data on auto-demolition results, $1,616,039$ vehicles were deregistered and $1,094,731$ vehicles were sent or scrapping. The remainder, more than 500,00 vehicles, about one-third of the total written off, were exported.
The amount sent to end-of-life management perations in Italy is $1,292,767$, equivalent to an average weight per vehicle of 1180 kg . Of he total flow to scrap there were 15,446 tons of vehicles directly exported, 243,346 tons o vehicles subjected to dismantling and depollution operations, and $1,033,995$ residual tons sent to shredding.
Dismantling operations, preliminary to shredding, involve not only the removal of polluting elements (fuels, oils, etc.) but also the Ity in 2019, 132,000 ris we 10,000 tons to recycling.
aly - dike other countries - does not eport data on the material composition f these streams.
More analytical data are provided by France and were used for an appropriate estimate for Italy. Applied to Italy - again considering aluminium
to be 80 percent of total non-ferrous - these coefficients allow an estimate of dismantling equal to about 13,000 tof aluminium.
At the shredding stage, on the other hand, data are also available in detail for Italy Out of more than one million tons, with a predominant share obviously consisting of ferrous metals (740,000 t), non-ferrous metals here are quantified at about $40,000 \mathrm{t}$, corresponding to an aluminium content of about $32,000 \mathrm{t}$.
A total recovery of $44,332 \mathrm{t}$ of aluminium is estimated, which roughly corresponds to 40 k of aluminium per vehicle.
Assuming that the aluminium content in vehicles is higher - somewhere between 90 and 110 kg / vehicle, as can be conservatively estimated based on Ducker data - there would be a very significant gap between what is expected and what is actually recycled.
Finally, it is important to remember that the current end-of-life vehicle (ELV) recycling process-post shredding and sorting-results in the production of aluminium scrap containing a mix of alloys (from casting and plastic processing) and sometimes small amounts of other unwanted materials. Today, this scrap grade meets the requirements of European reinies forrecyclig it automotive industry. automotive industry
and and ractices remained utomobiles, if recycling be no possibility of recovery of these highe value alloys, which could instead be recycled produce similar alloys with a large reduction in primary aluminium requirements.

